1,449 research outputs found

    The Public Granary Institution of the Ch’ing Dynasty, 1644-1911

    Get PDF

    The Growth and Decline of Chinese Family Clan

    Get PDF

    Effective Free Energy for Individual Dynamics

    Full text link
    Physics and economics are two disciplines that share the common challenge of linking microscopic and macroscopic behaviors. However, while physics is based on collective dynamics, economics is based on individual choices. This conceptual difference is one of the main obstacles one has to overcome in order to characterize analytically economic models. In this paper, we build both on statistical mechanics and the game theory notion of Potential Function to introduce a rigorous generalization of the physicist's free energy, which includes individual dynamics. Our approach paves the way to analytical treatments of a wide range of socio-economic models and might bring new insights into them. As first examples, we derive solutions for a congestion model and a residential segregation model.Comment: 8 pages, 2 figures, presented at the ECCS'10 conferenc

    Coherent state triplets and their inner products

    Full text link
    It is shown that if H is a Hilbert space for a representation of a group G, then there are triplets of spaces F_H, H, F^H, in which F^H is a space of coherent state or vector coherent state wave functions and F_H is its dual relative to a conveniently defined measure. It is shown also that there is a sequence of maps F_H -> H -> F^H which facilitates the construction of the corresponding inner products. After completion if necessary, the F_H, H, and F^H, become isomorphic Hilbert spaces. It is shown that the inner product for H is often easier to evaluate in F_H than F^H. Thus, we obtain integral expressions for the inner products of coherent state and vector coherent state representations. These expressions are equivalent to the algebraic expressions of K-matrix theory, but they are frequently more efficient to apply. The construction is illustrated by many examples.Comment: 33 pages, RevTex (Latex2.09) This paper is withdrawn because it contained errors that are being correcte

    Irreducible decomposition for tensor prodect representations of Jordanian quantum algebras

    Full text link
    Tensor products of irreducible representations of the Jordanian quantum algebras U_h(sl(2)) and U_h(su(1,1)) are considered. For both the highest weight finite dimensional representations of U_h(sl(2)) and lowest weight infinite dimensional ones of U_h(su(1,1)), it is shown that tensor product representations are reducible and that the decomposition rules to irreducible representations are exactly the same as those of corresponding Lie algebras.Comment: LaTeX, 14pages, no figur

    Nonlinear collective nuclear motion

    Get PDF
    For each real number Λ\Lambda a Lie algebra of nonlinear vector fields on three dimensional Euclidean space is reported. Although each algebra is mathematically isomorphic to gl(3,R)gl(3,{\bf R}), only the Λ=0\Lambda=0 vector fields correspond to the usual generators of the general linear group. The Λ<0\Lambda < 0 vector fields integrate to a nonstandard action of the general linear group; the Λ>0\Lambda >0 case integrates to a local Lie semigroup. For each Λ\Lambda, a family of surfaces is identified that is invariant with respect to the group or semigroup action. For positive Λ\Lambda the surfaces describe fissioning nuclei with a neck, while negative Λ\Lambda surfaces correspond to exotic bubble nuclei. Collective models for neck and bubble nuclei are given by irreducible unitary representations of a fifteen dimensional semidirect sum spectrum generating algebra gcm(3)gcm(3) spanned by its nonlinear gl(3,R)gl(3,{\bf R}) subalgebra plus an abelian nonlinear inertia tensor subalgebra.Comment: 13 pages plus two figures(available by fax from authors by request

    The Dirac Oscillator. A relativistic version of the Jaynes--Cummings model

    Get PDF
    The dynamics of wave packets in a relativistic Dirac oscillator is compared to that of the Jaynes-Cummings model. The strong spin-orbit coupling of the Dirac oscillator produces the entanglement of the spin with the orbital motion similar to what is observed in the model of quantum optics. The collapses and revivals of the spin which result extend to a relativistic theory our previous findings on nonrelativistic oscillator where they were known under the name of `spin-orbit pendulum'. There are important relativistic effects (lack of periodicity, zitterbewegung, negative energy states). Many of them disappear after a Foldy-Wouthuysen transformation.Comment: LaTeX2e, uses IOP style files (included), 14 pages, 9 separate postscript figure

    Computing a maximum clique in geometric superclasses of disk graphs

    Full text link
    In the 90's Clark, Colbourn and Johnson wrote a seminal paper where they proved that maximum clique can be solved in polynomial time in unit disk graphs. Since then, the complexity of maximum clique in intersection graphs of d-dimensional (unit) balls has been investigated. For ball graphs, the problem is NP-hard, as shown by Bonamy et al. (FOCS '18). They also gave an efficient polynomial time approximation scheme (EPTAS) for disk graphs. However, the complexity of maximum clique in this setting remains unknown. In this paper, we show the existence of a polynomial time algorithm for a geometric superclass of unit disk graphs. Moreover, we give partial results toward obtaining an EPTAS for intersection graphs of convex pseudo-disks
    • 

    corecore